7. Sınıf Matematik Konuları Ve Müfredatı MEB (2021-2022)

0 109

2021 ve 2022 7. Sınıf Matematik Konuları ve Müfredatı MEB. Ortaokul 7. Sınıf Matematik konuları ve Müfredatı nelerdir? 7. Sınıf Matematik Müfredatı 2021-2027. Ortaokul 7. Sınıf Matematik ders içerikleri ve detayları yazımızda.

7. Sınıf Matematik Konuları

2021 ve 2022 Eğitim Öğretim Yılı MEB 7. Sınıf Matematik konuları ve müfredatı belli oldu!. Ortaokul 7. Sınıf Matematik Konuları ve Müfredatı doğal sayılar, tam sayılar, kesirler, zaman ölçme ve uzamsal ilişkiler gibi konulardan oluşmaktadır. 7. Sınıf Matematik dersinde işlenecek konular iki dönem halinde aşağıda paylaşıldı. 2021 ve 2022 7.Sınıf Matematik Konuları ve Müfredatı şu şekildedir;

7. Sınıf Matematik Konuları 1.Dönem

Tam Sayılarla İşlemler
Rasyonel Sayılar
Rasyonel Sayılarla İşlemler
Cebirsel İfadeler
Eşitlik ve Denklem

7. SINIF TESTLERİ ÇÖZ

7. Sınıf Matematik Konuları 2.Dönem

Oran ve Orantı
Yüzdeler
Doğrular ve Açılar
Çokgenler
Çember ve Daire
Veri Analizi
Cisimlerin Farklı Yönlerden Görünümleri

7. Sınıf Matematik Konuları Ve Müfredatı MEB (2021-2022)
7. Sınıf Matematik Konuları Ve Müfredatı MEB (2021-2022)

7. SINIF DERS KİTAPLARI

7. SINIF KONULARI MEB

Ünite AdıKonularKazanım SayısıDers (saati)Yüzde(%)
1. ÜNİTETam Sayılar53017
2. ÜNİTERasyonel Sayılar4106
2. ÜNİTEKesirlerde İşlemler52313
3. ÜNİTECebirsel İfadeler3106
3. ÜNİTEEşitlik ve Denklem42011
4. ÜNİTEOran ve Orantı72011
4. ÜNİTEYüzdeler4158
5. ÜNİTEDoğrular ve Açılar274
5. ÜNİTEÇokgenler5158
5. ÜNİTEÇember ve Daire3106
6. ÜNİTEVeri Analizi4158
6. ÜNİTECisimlerin Farklı Yönlerden Görünümleri252
TOPLAM48180100

7. Sınıf Matematik Dersi Kazanımları

7. Sınıf Matematik Konuları ve Kazanımları aşağıdadır.

7.SINIF KAZANIM VE AÇIKLAMALARI
M.7.1. SAYILAR VE İŞLEMLER

M.7.1.1. Tam Sayılarla İşlemler
Terimler veya kavramlar: etkisiz eleman, yutan eleman, ters eleman, dağılma özelliği
M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar, ilgili problemleri çözer.
a) Çıkarma işleminin, eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.
b) Tam sayıların kullanıldığı asansör, termometre gibi araçlar yatay, dikey sayı doğrusu gibi modellerle ilişkilendirilerek toplama ve çıkarma işlemlerine yer verilir.

M.7.1.1.2. Toplama işleminin özelliklerini akıcı işlem yapmak için birer strateji olarak kullanır.
a) Örneğin 5+7+(-5)= ? toplamında sırasıyla değişme, birleşme, ters eleman ve etkisiz eleman özellikleri kullanılarak işlem şu şekilde yapılır: 5+7+(-5) = 5+((-5)+7) = (5+(-5))+7=0+7
b) Toplama işleminin değişme, birleşme, ters eleman ve etkisiz eleman özellikleri ele alınır.
M.7.1.1.3. Tam sayılarla çarpma ve bölme işlemlerini yapar.
a) Tam sayılarla çarpma ve bölme işleminin anlamlandırılmasına yönelik uygun modellerle yapılacak çalışmalara yer verilir.

b) Çarpma işleminin değişme, birleşme, etkisiz eleman, yutan eleman özellikleri ile çarpmanın, toplama ve çıkarma işlemleri üzerine dağılma özelikleri incelenir.
c) Çarpma ve bölme işlemlerinde 0’ın, 1’in ve -1’in etkisi incelenir.
M.7.1.1.4. Tam sayıların kendileri ile tekrarlı çarpımını üslü nicelik olarak ifade eder.
Kuvvetin tek veya çift doğal sayı olması durumları incelenir.
M.7.1.1.5. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer.

M.7.1.2. Rasyonel Sayılar
Terimler veya kavramlar: rasyonel sayılar, devirli ondalık gösterim
M.7.1.2.1. Rasyonel sayıları tanır ve sayı doğrusunda gösterir.
Her tam sayının paydası 1 olan bir rasyonel sayı olduğu vurgulanır. Ayrıca rasyonel sayılarla ilgili durumu incelenir.
M.7.1.2.2. Rasyonel sayıları ondalık gösterimle ifade eder.
Devirli olan ve olmayan ondalık gösterimler üzerinde durulur.
M.7.1.2.3. Devirli olan ve olmayan ondalık gösterimleri rasyonel sayı olarak ifade eder.
M.7.1.2.4. Rasyonel sayıları sıralar ve karşılaştırır.
Rasyonel sayılar karşılaştırılırken kesirler için kullanılan stratejiler dikkate alınabilir.
M.7.1.3. Rasyonel Sayılarla İşlemler
M.7.1.3.1. Rasyonel sayılarla toplama ve çıkarma işlemlerini yapar.
Rasyonel sayılarda toplama işleminin değişme, birleşme, etkisiz eleman ve ters eleman özellikleri incelenir
M.7.1.3.2. Rasyonel sayılarla çarpma ve bölme işlemlerini yapar.

Rasyonel sayılarda çarpma işleminin değişme, birleşme, yutan ve ters eleman özellikleri ile çarpmanın, toplama ve çıkarma işlemleri üzerine dağılma özellikleri incelenir.
M.7.1.3.3. Rasyonel sayılarla çok adımlı işlemleri yapar.
a) Çok adımlı işlemlerde hangi işlemin daha önce yapılacağı ayraçlarla belirtilir.
b)Kesir çizgisi kullanılarak verilen işlemlerde, işlem önceliğinin kesir çizgisine göre belirlendiği vurgulanır.
M.7.1.3.4. Rasyonel sayıların kare ve küplerini hesaplar.
M.7.1.3.5. Rasyonel sayılarla işlem yapmayı gerektiren problemleri çözer.

M.7.1.4. Oran ve Orantı
Terimler veya kavramlar: orantı, doğru orantı, ters orantı
M.7.1.4.1. Oranda çokluklardan birinin 1 olması durumunda diğerinin alacağı değeri belirler
M.7.1.4.2. Birbirine oranı verilen iki çokluktan biri verildiğinde diğerini bulur.
Günlük hayat durumlarına ilişkin örnekler üzerinde çalışmalar yapılır.
M.7.1.4.3. Gerçek hayat durumlarını inceleyerek iki çokluğun orantılı olup olmadığına karar verir.
a) İki oran eşitliğinin orantı olarak adlandırıldığı vurgulanır.
b) Doğru orantılı çokluklar ele alınır.
c) Doğru orantı grafiklerine girilmez.

M.7.1.4.4. Doğru orantılı iki çokluk arasındaki ilişkiyi ifade eder.
Doğru orantılı çokluklar arasında çarpmaya dayalı bir ilişki olduğu dikkate alınır.
Örneğin bir sınıfta kızların sayısının erkeklerin sayısına oranı 3:5 ise kızların sayısı 3’ün, erkeklerin sayısı ise 5’in aynı sayı katı olduğu dikkate alınır.
M.7.1.4.5. Doğru orantılı iki çokluğa ait orantı sabitini belirler ve yorumlar.
Verilen gerçek hayat durumları incelenerek orantı sabitini belirlemeye yönelik çalışmalar yapılır.
M.7.1.4.6. Gerçek hayat durumlarını inceleyerek iki çokluğun ters orantılı olup olmadığına karar verir.
a) Ters orantılı çoklukların çarpımının sabit olduğunu keşfetmeye yönelik çalışmalara yer verilir.
b) Ters orantı grafiklerine girilmez.
M.7.1.4.7. Doğru ve ters orantıyla ilgili problemleri çözer.
Ölçek, karışım, indirim ve artış gibi durumları içeren problemlere yer verilir.

M.7.1.5. Yüzdeler
M.7.1.5.1. Bir çokluğun belirtilen bir yüzdesine karşılık gelen miktarını ve belirli bir yüzdesi verilen çokluğun tamamını bulur.
a) %120 gibi %100’den büyük ve %0,5 gibi %1’den küçük yüzdelik ifadelerin anlaşılmasına yönelik çalışmalara da yer verilir.
b) Bir çokluğun belirtilen bir yüzdesini tahmin etmeye yönelik çalışmalara yer verilir.
M.7.1.5.2. Bir çokluğu diğer bir çokluğun yüzdesi olarak hesaplar.
Örneğin 20 sayısı 50’nin %40’ıdır.
M.7.1.5.3. Bir çokluğu belirli bir yüzde ile arttırmaya veya azaltmaya yönelik hesaplamalar yapar.
M.7.1.5.4. Yüzde ile ilgili problemleri çözer.

M.7.2. CEBİR
M.7.2.1. Cebirsel İfadeler
M.7.2.1.1. Cebirsel ifadelerle toplama ve çıkarma işlemleri yapar.
Cebirsel ifadelerle toplama ve çıkarma işleminde uygun modeller kullanılır.
M.7.2.1.2. Bir doğal sayı ile bir cebirsel ifadeyi çarpar.
Örneğin 5 (x + 3) = 5x + 15

M.7.2.1.3. Sayı örüntülerinin kuralını harfle ifade eder, kuralı harfle ifade edilen örüntünün istenilen terimini bulur.
a) Adımlar arasındaki farkı sabit olan örüntülerle sınırlı kalınır.
b) Değişken kullanımının önemi ve gerekliliği vurgulanır.
c) Sayı örüntüleri incelenerek örüntünün kuralını bir değişken ile (örneğin n cinsinden) yazmaya yönelik çalışmalar yapılır. Örneğin ilk dört terimi 3, 9, 15 ve 21 olan bir aritmetik örüntünün kuralı 6n–3 olarak ifade edilir.
ç) Günlük hayat durumlarında veya şekil örüntülerindeki ilişkileri örüntüye dönüştürerek kuralı bulmaya yönelik çalışmalara da yer verilir.
Günlük hayat durumu örneği: Birinci hafta 7 kelebekle koleksiyona başlayan Emine, sonraki her hafta koleksiyonuna 5 kelebek eklemektedir. Kelebek sayısının hafta sayısıyla ilişkisini cebirsel ifade olarak belirtiniz.

Şekil örüntüsü örneği: Her adımda mevcut altıgenlerden yalnız biriyle ortak kenara sahip olacak şekilde
altıgen eklenerek oluşturulan şekil örüntüsünde, altıgen sayısı ile toplam kenar sayısı arasındaki ilişkinin
cebirsel kuralı nedir?

M.7.2.2. Eşitlik ve Denklem
Terimler veya kavramlar: eşitlik, derece, bilinmeyen, denklem
M.7.2.2.1. Eşitliğin korunumu ilkesini anlar.
a) 7 + 2 = +3 gibi eşitliklerin bozulmaması için yerine gelecek sayıyı bulmaya yönelik çalışmalar yapılır.
b) Ekleme ve çıkarma durumlarında eşitliğin korunduğunu göstermek için terazi veya benzeri denge modellerine yer verilir.
c) Eşitliğin her iki tarafına aynı sayının eklenmesi veya çıkarılması ve iki tarafın aynı sayıyla çarpılması veya bölünmesi durumunda eşitliğin korunması ele alınır.
M.7.2.2.2. Birinci dereceden bir bilinmeyenli denklemi tanır ve verilen gerçek hayat durumlarına uygun birinci dereceden bir bilinmeyenli denklem kurar.
M.7.2.2.3. Birinci dereceden bir bilinmeyenli denklemleri çözer.
Denklemlerdeki katsayılar tam sayılardan seçilir.
M.7.2.2.4. Birinci dereceden bir bilinmeyenli denklem kurmayı gerektiren problemleri çözer.

M.7.3. GEOMETRİ VE ÖLÇME
M.7.3.1. Doğrular ve Açıla
r
Terimler veya kavramlar: ters açılar, iç ters açılar, dış ters açılar, yöndeş açılar
M.7.3.1.1. Bir açıyı iki eş açıya ayırarak açıortayı belirler.
Dinamik geometri yazılımlarından yararlanılabilir.
M.7.3.1.2. İki paralel doğruyla bir keseninin oluşturduğu yöndeş, ters, iç ters, dış ters açıları belirleyerek özelliklerini inceler; oluşan açıların eş veya bütünler olanlarını belirler; ilgili problemleri çözer.
a) Aynı düzlemde olan üç doğrunun birbirine göre durumları ele alınır.
b) İki doğrunun birbirine paralel olup olmadığına karar vermeye yönelik çalışmalara da yer verilir. Bunu yaparken doğruların ortak kesenle yaptığı açıların eş olma durumlarından yararlanılabilir.

M.7.3.2. Çokgenler
Terimler veya kavramlar: iç açı, dış açı
M.7.3.2.1. Düzgün çokgenlerin kenar ve açı özelliklerini açıklar.
Yalnızca dışbükey çokgenler incelenir.
M.7.3.2.2. Çokgenlerin köşegenlerini, iç ve dış açılarını belirler; iç açılarının ve dış açılarının ölçüleri toplamını hesaplar.
İç açılar toplamını keşfetmeye yönelik çalışmalara yer verilir.
M.7.3.2.3. Dikdörtgen, paralelkenar, yamuk ve eşkenar dörtgeni tanır; açı özelliklerini belirler.
a) Kenarların oluşturduğu açılarla birlikte eşkenar dörtgen, kare ve dikdörtgende köşegenlerin oluşturduğu açılar da incelenir.

b) Kare, dikdörtgenin ve eşkenar dörtgenin özel bir durumu olarak ele alınır. Bunun yanı sıra dikdörtgen ve eşkenar dörtgen, paralelkenarın özel hâlleri olarak ele alınır. Ayrıca dikdörtgen, eşkenar dörtgen ve paralelkenar da yamuğun özel durumları olarak ele alınır.
M.7.3.2.4. Eşkenar dörtgen ve yamuğun alan bağıntılarını oluşturur, ilgili problemleri çözer.
M.7.3.2.5. Alan ile ilgili problemleri çözer.
a) Üçgen, dikdörtgen, paralelkenar, yamuk veya eşkenar dörtgenden oluşan bileşik şekillerin alanlarını bulmayı gerektiren problemlere yer verilir.
b) Dikdörtgenin çevre uzunluğuyla alanını ilişkilendirmeye yönelik çalışmalara yer verilir. Aynı alana sahip farklı dikdörtgenlerin çevre uzunlukları ile aynı çevre uzunluğuna sahip farklı dikdörtgenlerin alanları incelenir.

M.7.3.3. Çember ve Daire
Terimler veya kavramlar: çember, daire, merkez açı, yay, çember parçası, daire dilimi
M.7.3.3.1. Çemberde merkez açıları, gördüğü yayları ve açı ölçüleri arasındaki ilişkileri belirler.
M.7.3.3.2. Çemberin ve çember parçasının uzunluğunu hesaplar.
Merkez açı ile çember parçasının uzunluğu ilişkilendirilirken orandan yararlanmaya yönelik çalışmalara yer verilir.
M.7.3.3.3. Dairenin ve daire diliminin alanını hesaplar.
Merkez açı ile daire diliminin alanı ilişkilendirilirken orandan yararlanmaya yönelik çalışmalara yer verilir.

M.7.3.4. Cisimlerin Farklı Yönlerden Görünümleri
M.7.3.4.1. Üç boyutlu cisimlerin farklı yönlerden iki boyutlu görünümlerini çizer.
a) Eş küplerden oluşturulmuş yapılar ve bilinen geometrik cisimler kullanılır. Çizim için uygun kareli
kâğıtlar kullanılır. Yapıların farklı yönlerden görünümlerinin ilişkilendirilmesi istenir (ön-arka ve sağ-sol görüntülerinin simetrik olması gibi).
b) Uygun bilgi ve iletişim teknolojileriyle etkileşimli çalışmalara yer verilebilir.
M.7.3.4.2. Farklı yönlerden görünümlerine ilişkin çizimleri verilen yapıları oluşturur.
a) Eş küplerden oluşturulmuş yapılar ve bilinen geometrik cisimler kullanılır. Eş küplerle oluşan yapıları çizmek için izometrik kâğıt kullanılabilir.
b) Uygun bilgi ve iletişim teknolojileriyle etkileşimli çalışmalara yer verilebilir.

M.7.4. VERİ İŞLEME
M.7.4.1. Veri Analizi

Terimler veya kavramlar: çizgi grafiği, daire grafiği, ortanca (medyan), tepe değer (mod)
M.7.4.1.1. Verilere ilişkin çizgi grafiği oluşturur ve yorumlar.
a) İki veri grubuna ait grafik oluşturma çalışmalarına da yer verilir.
b) Yanlış yorumlamalara yol açan çizgi grafikleri de incelenir.
M.7.4.1.2. Bir veri grubuna ait ortalama, ortanca ve tepe değeri bulur ve yorumlar.

Belli bir veri grubu için bu değerlerden hangisinin daha kullanışlı olduğunu anlamaya yönelik çalışmalara yer verilir. Bu doğrultuda gerektiğinde bilgi ve iletişim teknolojilerine yer verilir.
M.7.4.1.3. Bir veri grubuna ilişkin daire grafiğini oluşturur ve yorumlar.
Daire grafiği oluşturulurken gerektiğinde etkileşimli bilgi ve iletişim teknolojilerinden yararlanılır.
M.7.4.1.4. Verileri sütun, daire veya çizgi grafiği ile gösterir ve bu gösterimler arasında uygun olan dönüşümleri yapar.

7. Sınıf Matematik Konuları ve Müfredatı MEB (2021-2022). Milli Eğitim Bakanlığı (MEB) müfredatına uyumlu olarak hazırlanan 7. Sınıf Matematik konuları yukarıda listelenmiştir. 7. Sınıf Matematik Konuları tüm yıl boyunca işlenmektedir. Konulara ait testleri ve 7. Sınıf PDF ders kitaplarını sitemizde bulabilirsiniz. 7. Sınıf Matematik Testleri sitemizde paylaşıldı. 7. Sınıf Tüm Matematik testlerini çözmek için TIKLA

7. SINIF ÇALIŞMA SORULARI

LGS PUAN HESAPLAMA MEB

Bunlara da Bakabilirsiniz!

Cevap bırakın

E-posta hesabınız yayımlanmayacak.

error: Content is protected!